Open main menu

Changes

Area

3,373 bytes added, 17:23, 8 April 2019
no edit summary
| style="height:20px; width:200px; text-align:center;" |This shape has 12 full [[square]]s and 3 half [[square]]s. So the [[area]] is 12 + 3.5 = 15.5 squares.
| style="height:20px; width:200px; text-align:center;" |This shape has 10 full [[square]]s, 2/3 of a [[square]], 4 half [[square]]s and 1/3 of a [[square]]. So the [[area]] is 10 + 2/3 + 4 + 1/3 = 15 [[square]]s.
| style="height:20px; width:200px; text-align:center;" |This [[circle]] has 12 full [[square]]s, 4 nearly full [[square]]s, 4 nearly empty [[square]]s, 6 half squares. The [[area]] is difficult to [[estimate]] but it is around 19 [[square]]s.
|}
: The [[unit]]s of [[area]] are not usually '[[square]]s', they are either [[Metres Squared|metres squared]] (m<sup>2</sup>) or [[Centimetres Squared|centimetres squared]] (cm<sup>2</sup>).
: The [[area]] of a [[rectangle]] or a [[square]] can also be found if the length of the sides is known.
: To find the [[area]] of a [[rectangle]] or [[square]]; multiply the [[base]] by the [[height]]. {| class="wikitable"|-|[[File:SqaureArea1.png|center|200px]]|[[File:RectangleArea1.png|center|200px]]|[[File:RectangleArea2.png|center|200px]]|-| style="height:20px; width:200px; text-align:center;" |<math>area = base \times height</math> <math>area = 5 \times 5</math> <math>area = 25m^2</math> | style="height:20px; width:200px; text-align:center;" |<math>area = base \times height</math> <math>area = 7 \times 4</math> <math>area = 28cm^2</math> | style="height:20px; width:200px; text-align:center;" |<math>area = base \times height</math> <math>area = 6\times 4.5</math> <math>area = 27cm^2</math> |} : The [[area]] of parallelograms can be found by multiplying the [[base]] by the [[height]].: The [[area]] of a triangle can be found by multiplying half the [[base]] by the [[height]]. {| class="wikitable"|-|[[File:ParallelogramArea1.png|center|200px]]|[[File:ParallelogramArea2.png|center|200px]]|[[File:TriangleArea1.png|center|200px]]|-| style="height:20px; width:200px; text-align:center;" |<math>area = base \times height</math> <math>area = 6 \times 3</math> <math>area = 18cm^2</math>| style="height:20px; width:200px; text-align:center;" |<math>area = base \times height</math> <math>area = 4 \times 6</math> <math>area = 24cm^2</math>| style="height:20px; width:200px; text-align:center;" |<math>area = \frac{1}{2} \times base \times height</math> <math>area = \frac{1}{2} \times 5 \times 7</math> <math>area = 17.5cm^2</math>|} ==Key Stage 3=====Meaning===[[Area]] is the size of a surface. ===About Area===: The [[unit]]s of [[area]] are [[Metres Squared|metres squared]] or [[Centimetres Squared|centimetres squared]]. ===Equations=======Area of a Rectangle====<math>area = base \times height</math> <math>a = b\times h</math> ====Area of a Triangle====<math>area = \frac{1}{2} \times base \times height</math> <math>a = \frac{b \times h}{2}</math> ====Area of a Trapezium====<math>area = \frac{1}{2} \times (shortside+longside) \times height</math> <math>a = \frac{1}{2} \times (A+B) \times height</math> ====Area of a Circle====<math>area = \pi \times (radius)^2</math> <math>a = \pi r^2</math> ==Key Stage 4=====Meaning===[[Area]] is the size of a surface. ===About Area===: The [[unit]]s of [[area]] are [[Metres Squared|metres squared]] or [[Centimetres Squared|centimetres squared]]. ===Equations=======Area of a Rectangle====<math>area = base \times height</math> <math>a = b\times h</math> ====Area of a Triangle====<math>area = \frac{1}{2} \times base \times height</math> <math>a = \frac{b \times h}{2}</math> ====Area of a Trapezium====<math>area = \frac{1}{2} \times (shortside+longside) \times height</math> <math>a = \frac{1}{2} \times (A+B) \times height</math> ====Area of a Circle====<math>area = \pi \times (radius)^2</math> <math>a = \pi r^2</math> ====Surface Area of a Sphere====<math>area = 4 \times \pi \times (radius)^2</math> <math>a = 4 \pi r^2</math> ====Surface Area of a Cylinder====<math>area = 2 \times \pi \times (radius)^2 + 2 \times \pi \times radius \times height</math> <math>a = 2 \pi r^2 + 2 \pi rh</math>