Open main menu

Changes

Density

22,386 bytes added, 15:51, 23 May 2024
Finding Density from Mass and Volume
===About Density===
: The [[unit]] of [[density]] is kg/m<sup>3</sup>.
: An [[object]] with a large amount of [[mass]] in a small [[Volume (Space)|volume]] is said to have a high [[density]].
: An [[object]] with a small amount of [[mass]] spread over a large [[Volume (Space)|volume]] is said to have a low [[density]].
: The [[SI Unit|units]] of [[density]] are kg/m<sup>3</sup>.
{| class="wikitable"
|[[File:ParticleModelSolidLiquidGas.png|center|500px]]
|-
| style="height:20px; width:200px; text-align:center;" |[[Solid]]s are the most '''dense ''' [[State of Matter|state of matter]] because there are a large number of [[particle]]s in a certain [[Volume (Space)|volume]] and [[gas]]es are the least '''dense''' [[State of Matter|state of matter]] because there are a small number of [[particle]]s in a the same [[Volume (Space)|volume]].|} ===Density and Floating===: If an [[object]] is more '''dense''' than [[water]] it will sink.: If an [[object]] is less '''dense''' than [[water]] it will rise through [[water]] and float on the surface. ===Formula===: Density = Mass/volume <math>\rho = \frac{m}{V}</math> Where:: ρ = The [[density]] of the [[object]].: m = The [[mass]] of the [[object]].: V = The [[Volume (Space)|volume]] taken up by the [[object]]. ===Example Calculations==={| class="wikitable"|-| style="height:20px; width:200px; text-align:center;" |'''5000kg of [[Iron]] has a [[Volume (Space)|volume]] of 0.635m<sup>3</sup>. Calculate the density of [[Iron]].'''| style="height:20px; width:200px; text-align:center;" |'''A 50,000cm<sup>3</sup> container of [[water]] is full with a 50kg [[mass]] of [[water]]. Calculate the density of [[water]].'''| style="height:20px; width:200px; text-align:center;" |'''A 200,000cm<sup>3</sup> [[Volume (Space)|volume]] of [[air]] has a [[mass]] of 245g. Calculate the density of [[air]].|-| style="height:20px; width:200px; text-align:left;" |[[Mass]] = 5000kg [[Volume (Space)|Volume]] = 0.635m<sup>3</sup> :<math>\rho = \frac{m}{V}</math> :<math>\rho = \frac{5000}{0.635}</math> :<math>\rho = 7874kg/m^3</math>| style="height:20px; width:200px; text-align:left;" |[[Mass]] = 50kg [[Volume (Space)|Volume]] = 50,000cm<sup>3</sup> = 0.05m<sup>3</sup> :<math>\rho = \frac{m}{V}</math> :<math>\rho = \frac{50}{0.05}</math> :<math>\rho = 1000kg/m^3</math>| style="height:20px; width:200px; text-align:left;" |[[Mass]] = 245g = 0.245kg [[Volume (Space)|Volume]] = 200,000cm<sup>3</sup> = 0.2m<sup>3</sup> :<math>\rho = \frac{m}{V}</math> :<math>\rho = \frac{0.245}{0.2}</math> :<math>\rho = 1.225kg/m^3</math>|} ==Key Stage 4=====Meaning===[[Density]] is the amount of [[mass]] per [[unit]] [[Volume (Space)|volume]] of an [[object]]. ===About Density===: The [[SI Unit]] of [[density]] is kg/m<sup>3</sup>.: [[Density]] is a [[scalar]] quantity as it has [[magnitude]] but does not have a direction.: An [[object]] with a large amount of [[mass]] in a small [[Volume (Space)|volume]] is said to have a high [[density]].: An [[object]] with a small amount of [[mass]] spread over a large [[Volume (Space)|volume]] is said to have a low [[density]]. ===Finding the Density=======Finding The Density of a Regular Object====: A regular [[object]] is a [[solid]] in the shape of a cuboid.#Measure the [[mass]] of the cuboid using an [[Electronic Balance]] or [[Measuring Scale]].#Measure the length, width and height of the cuboid.#Multiply the length, width and height to calculate the [[Volume (Space)|volume]].#Divide the [[mass]] by the [[Volume (Space)|volume]] of the cuboid to calculate the [[density]]. ====Finding The Density of an Irregular Object====: An irregular [[object]] is a [[solid]] whose shape prevents the sides being measured by a [[ruler]].#Measure the [[mass]] of the [[object]] using an [[Electronic Balance]] or [[Measuring Scale]].#Fill a [[Measuring Cylinder|measuring cylinder]] with enough [[water]] to submerse the [[object]].#Take a reading of the [[Volume (Space)|volume]] of [[water]] in the [[Measuring Cylinder]].#Place the [[object]] in the [[Measuring Cylinder]] and ensure it is submersed.#Take a reading of the [[Volume (Space)|volume]] of [[water]] + [[object]] in the [[Measuring Cylinder]].#Subtract the [[Volume (Space)|volume]] of [[water]] from the [[Volume (Space)|volume]] of [[water]] + [[object]] to find the [[Volume (Space)|volume]] of the [[object]].#Divide the [[mass]] by the [[Volume (Space)|volume]] of the [[object]] to calculate the [[density]]. {| class="wikitable"|-|[[File:ParticleModelSolidLiquidGas.png|center|500px]]|-| style="height:20px; width:200px; text-align:center;" |[[Solid]]s are the most '''dense''' [[State of Matter|state of matter]] because they have the largest amount of [[matter]] per unit [[Volume (Space)|volume]] and [[gas]]es are the least '''dense''' [[State of Matter|state of matter]] because they have the smallest amount of [[matter]] per unit [[Volume (Space)|volume]].
|}
===Equation===
: Density = Mass/volume
:<math>\rho = \tfracfrac{m}{V}</math> 
Where:
: ρ = The [[density]]of the [[object]].: m = The [[mass]]of the [[object]].: V = The [[Volume (Space)|volume]]taken up by the [[object]].
===Example Calculations===
====Finding Density from Mass and Volume====
{| class="wikitable"
|-
| style="height:20px; width:200px300px; text-align:center;" |'''5000[[kg]] 5000kg of [[Iron]] has a [[Volume (Space)|volume]] of 0.635m<sup>23</sup>. Calculate the density of [[Iron]] correct to two [[Significant Figures|significant figures]].'''| style="height:20px; width:200px300px; text-align:center;" |TextA 200,000cm<sup>3</sup> [[Volume (Space)| style="height:20px; width:200px; text-align:center;" volume]] of [[air]] has a [[mass]] of 245g. Calculate the density of [[air]] correct to two [[Significant Figures|Textsignificant figures]].
|-
| style="height:20px; width:200px300px; text-align:centerleft;" |'''1. State the known quantities in [[MassSI Unit]] = 5000s''' [[kgMass]]= 5000kg
[[Volume (Space)|Volume]] = 0.635m<sup>3</sup>
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' [[Mass]] = 245g = 0.245kg [[Volume (Space)|Volume]] = 200,000cm<sup>3</sup> = 0.2m<sup>3</sup>|-| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' <math>\rho = \frac{m}{V}</math> <math>\rho = \frac{5000}{0.635}</math> <math>\rho = 7874kg/m^3</math> <math>\rho \approx 7900kg/m^3</math> | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' <math>\rho = \frac{m}{V}</math> <math>\rho = \frac{0.245}{0.2}</math> <math>\rho = 1.225kg/m^3</math> <math>\rho \approx 1.2kg/m^3</math>|} ====Finding Volume from Mass and Density===={| class="wikitable"| style="height:20px; width: 300px; text-align:center;" |[[Gold]] has a [[density]] of 19320kg/m<sup>3</sup>. 31g of [[Gold]] is used to make a coin. Calculate the [[Volume (Space)|volume]] of this coin correct to two [[Significant Figures|significant figures]].| style="height:20px; width: 300px; text-align:center;" |A 1.3ton rock with a [[density]] of 2650kg/m<sup>3</sup> is dropped into a swimming pool. Calculate the [[Volume (Space)|volume]] of [[water]] displaced by the rock, correct to two [[Significant Figures|significant figures]].|-| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' ρ = 19320kg/m<sup>3</sup> m = 31g = 31x10<sup>-3</sup>kg| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' ρ = 2650kg/m<sup>3</sup> m = 1.3ton = 1.3x10<sup>3</sup>kg|-| style="height:20px; width: 300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math>\rho = \tfracfrac{m}{V}</math> <math>19320 = \frac{31 \times 10^{-3}}{V}</math>| style="height:20px; width: 300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math>\rho = \frac{m}{V}</math> <math>2650 = \frac{1.3 \times 10^{3}}{V}</math>|-| style="height:20px; width: 300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math>19320V = 31 \times 10^{-3}</math> <math>V = \frac{31 \times 10^{-3}}{19320}</math> <math>V = 1.60455 \times 10^{-6}m^3</math> <math>V \approx 1.6 \times 10^{-6}</math>| style="height:20px; width: 300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math>2650V = 1.3 \times 10^{3}</math> <math>V = \frac{1.3 \times 10^{3}}{2650}</math> <math>V = 0.490566m^3</math> <math>V \approx 0.49m^3</math>|} ====Finding Mass from Volume and Density===={| class="wikitable"| style="height:20px; width: 300px; text-align:center;" |A car is filled with 32 litres of gasoline, which has a [[density]] of 719.7kg/m<sup>3</sup>. Calculate the [[mass]] of gasoline added to the car, correct to two [[Significant Figures|significant figures]].| style="height:20px; width: 300px; text-align:center;" |A 2,500,000 litre swimming pool is filled with Chlorinated [[water]] which has a density of 993kg/m<sup>3</sup>. Calculate the [[mass]] of Chlorinated [[water]] in this swimming pool, correct to two [[Significant Figures|significant figures]].|-| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' ρ = 719.7kg/m<sup>3</sup> V = 32 litres = 32x10<sup>-3</sup>m<sup>3</sup>| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' ρ = 993kg/m<sup>3</sup> V = 2,500,000 litres = 2,500m<sup>3</sup>|-| style="height:20px; width: 300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math>\rho = \frac{m}{V}</math> <math>719.7 = \frac{m}{32\times10^{-3}}</math>| style="height:20px; width: 300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math>\rho = \frac{m}{V}</math> <math>993 = \frac{m}{2500}</math>|-| style="height:20px; width: 300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math>m = 719.7 \times 32 \times 10^{-3}</math> <math>m = 23.0304kg</math> <math>m \approx 23kg</math>| style="height:20px; width: 300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math>m = 993 \times 2500</math> <math>m = 2482500kg</math> <math>m \approx 2500000kg</math>|} ===References=======AQA==== :[https://www.amazon.co.uk/gp/product/1782945598/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945598&linkCode=as2&tag=nrjc-21&linkId=ad276ad49df77ab4b40ab4fd0fe09836 ''Density, page 194, GCSE Combined Science; The Revision Guide, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/0008158762/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0008158762&linkCode=as2&tag=nrjc-21&linkId=a0fffa35b3ea49a63404f6704e0df7cc ''Density, page 34, GCSE Chemistry; Student Book, Collins, AQA '']:[https://www.amazon.co.uk/gp/product/1471851370/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851370&linkCode=as2&tag=nrjc-21&linkId=01c69b0ae058f809cf636033e6ba793e ''Density, page 67, GCSE Physics, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1782945970/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945970&linkCode=as2&tag=nrjc-21&linkId=a120d24dcc7cc7a58192069a3aafc1d2 ''Density, pages 106-108, 170-172, GCSE Physics; The Complete 9-1 Course for AQA, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/1471851354/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851354&linkCode=as2&tag=nrjc-21&linkId=9012a0d354024419214fb3ad5ac44ba0 ''Density, pages 319, 323, GCSE Combined Science Trilogy 1, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/178294558X/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=178294558X&linkCode=as2&tag=nrjc-21&linkId=f0dfb66dafcb0c6e9449e7b1a4ae1ac87 ''Density, pages 38, 58, 59, GCSE Physics; The Revision Guide, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/019835939X/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=019835939X&linkCode=as2&tag=nrjc-21&linkId=57e96876985fc39b1a3d8a3e3dc238b6 ''Density, pages 76-77, 164-165, 169, 204-205, GCSE Physics; Third Edition, Oxford University Press, AQA '']:[https://www.amazon.co.uk/gp/product/0008158770/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0008158770&linkCode=as2&tag=nrjc-21&linkId=ec31595e720e1529e49876c3866fff6e ''Density, pages 82, 84-7, 173, 207, 237, GCSE Physics; Student Book, Collins, AQA '']:[https://www.amazon.co.uk/gp/product/1782946403/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782946403&linkCode=as2&tag=nrjc-21&linkId=32a0abb60dff015b15b50e9b1d7b4644 ''Density, pages 96-98, GCSE Combined Science Trilogy; Physics, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/1471851370/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851370&linkCode=as2&tag=nrjc-21&linkId=01c69b0ae058f809cf636033e6ba793e ''Density; and floating, pages 137-8, GCSE Physics, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1782945970/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945970&linkCode=as2&tag=nrjc-21&linkId=a120d24dcc7cc7a58192069a3aafc1d2 ''Density; investigating, page 290, GCSE Physics; The Complete 9-1 Course for AQA, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/1782946403/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782946403&linkCode=as2&tag=nrjc-21&linkId=32a0abb60dff015b15b50e9b1d7b4644 ''Density; investigating, page 98, GCSE Combined Science Trilogy; Physics, CGP, AQA '']:[https://www.amazon.co.uk/gp/product/1471851370/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851370&linkCode=as2&tag=nrjc-21&linkId=01c69b0ae058f809cf636033e6ba793e ''Density; liquids, pages 68, 71, GCSE Physics, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1471851354/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851354&linkCode=as2&tag=nrjc-21&linkId=9012a0d354024419214fb3ad5ac44ba0 ''Density; of a liquid, page 320, GCSE Combined Science Trilogy 1, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1471851354/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851354&linkCode=as2&tag=nrjc-21&linkId=9012a0d354024419214fb3ad5ac44ba0 ''Density; of a regular solid, page 321, GCSE Combined Science Trilogy 1, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1471851354/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851354&linkCode=as2&tag=nrjc-21&linkId=9012a0d354024419214fb3ad5ac44ba0 ''Density; of an irregularly shaped solid, pages 321-2, GCSE Combined Science Trilogy 1, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1471851370/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851370&linkCode=as2&tag=nrjc-21&linkId=01c69b0ae058f809cf636033e6ba793e ''Density; of gases, page 71, GCSE Physics, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/1471851370/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1471851370&linkCode=as2&tag=nrjc-21&linkId=01c69b0ae058f809cf636033e6ba793e ''Density; of solids, pages 69-70, 71, GCSE Physics, Hodder, AQA '']:[https://www.amazon.co.uk/gp/product/0008158770/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0008158770&linkCode=as2&tag=nrjc-21&linkId=ec31595e720e1529e49876c3866fff6e ''Density; of water (anomaous expansion), page 91, GCSE Physics; Student Book, Collins, AQA ''] ====Edexcel==== :[https://www.amazon.co.uk/gp/product/1292120223/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1292120223&linkCode=as2&tag=nrjc-21&linkId=068ecf40278c32406a7f1c6e66751417 ''Density, page 183, GCSE Physics, Pearson Edexcel '']:[https://www.amazon.co.uk/gp/product/1292120193/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1292120193&linkCode=as2&tag=nrjc-21&linkId=572df39392fb4200db8391d98ae6314e ''Density, page 415, GCSE Combined Science, Pearson Edexcel '']:[https://www.amazon.co.uk/gp/product/1782945741/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945741&linkCode=as2&tag=nrjc-21&linkId=30da4f2178da182547b62a7329d13b57 ''Density, pages 200, 201, GCSE Combined Science; The Revision Guide, CGP, Edexcel '']:[https://www.amazon.co.uk/gp/product/1782948163/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782948163&linkCode=as2&tag=nrjc-21&linkId=0fdbfd5dd397d6e24a9dfb250f08587f ''Density, pages 296-298, GCSE Physics, CGP, Edexcel '']:[https://www.amazon.co.uk/gp/product/1782945733/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945733&linkCode=as2&tag=nrjc-21&linkId=2a2dbec9db6bf5766c0458d908fa0a52 ''Density, pages 93, 94, 101, 102, GCSE Physics; The Revision Guide, CGP, Edexcel '']:[https://www.amazon.co.uk/gp/product/1782948163/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782948163&linkCode=as2&tag=nrjc-21&linkId=0fdbfd5dd397d6e24a9dfb250f08587f ''Density; floating, pages 321, 322, GCSE Physics, CGP, Edexcel '']:[https://www.amazon.co.uk/gp/product/1782948163/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782948163&linkCode=as2&tag=nrjc-21&linkId=0fdbfd5dd397d6e24a9dfb250f08587f ''Density; fluid pressure, pages 318, 319, GCSE Physics, CGP, Edexcel '']:[https://www.amazon.co.uk/gp/product/1292120223/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1292120223&linkCode=as2&tag=nrjc-21&linkId=068ecf40278c32406a7f1c6e66751417 ''Density; fluids, page 203, GCSE Physics, Pearson Edexcel '']:[https://www.amazon.co.uk/gp/product/1782948163/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782948163&linkCode=as2&tag=nrjc-21&linkId=0fdbfd5dd397d6e24a9dfb250f08587f ''Density; states of matter, page 300, GCSE Physics, CGP, Edexcel ''] ====OCR====:[https://www.amazon.co.uk/gp/product/1782945695/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945695&linkCode=as2&tag=nrjc-21&linkId=ceafcc80bcad6b6754ee97a0c7ceea53 ''Density, page 151, Gateway GCSE Combined Science; The Revision Guide, CGP, OCR '']:[https://www.amazon.co.uk/gp/product/1782945687/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945687&linkCode=as2&tag=nrjc-21&linkId=9a598e52189317a20311d7a632747bc9 ''Density, pages 13, 14, Gateway GCSE Physics; The Revision Guide, CGP, OCR '']:[https://www.amazon.co.uk/gp/product/0198359837/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0198359837&linkCode=as2&tag=nrjc-21&linkId=3c4229e8b023b2b60768e7ea2307cc6f ''Density; Calculation, pages 24-25, Gateway GCSE Physics, Oxford, OCR '']:[https://www.amazon.co.uk/gp/product/0198359837/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0198359837&linkCode=as2&tag=nrjc-21&linkId=3c4229e8b023b2b60768e7ea2307cc6f ''Density; Measurement, pages 250-251, Gateway GCSE Physics, Oxford, OCR '']:[https://www.amazon.co.uk/gp/product/0198359837/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0198359837&linkCode=as2&tag=nrjc-21&linkId=3c4229e8b023b2b60768e7ea2307cc6f ''Density; Particle theory, pages 25, Gateway GCSE Physics, Oxford, OCR ''] ==Key Stage 5=====Meaning===[[Density]] of a substance is its [[mass]] per [[unit]] volume. ===About Density=== *The [[unit]]s of [[density]] are typically [[kilogram]]s per cubic metre (kg/m³) or grams per cubic centimeter (g/cm³).*[[Density]] is a fundamental property of [[material]]s and affects buoyancy, stability, and structural integrity.*The [[density]] of a substance can change with [[temperature]] and [[pressure]].*'''Density''' is used in calculating the [[mass]] of an [[object]] given its [[Volume (Space)|volume]], and vice versa.*For an [[alloy]] the '''density''' of that [[alloy]] is found by [[sum]]ing the [[mass]] of each [[alloy]] divided by the total [[Volume (Space)|volume]]. However, where the [[Volume (Space)|volume]] of each component is known, not the [[mass]] then the [[mass]] is replaced with the [[Product (Maths)|product]] of the [[density]] and [[Volume (Space)|volume]] of each [[alloy]]. ===Formula=== ====Density of a single material===='''Density''' of a [[material]] is given by the formula: *<math>\rho = \frac{m}{V}</math> Where: ρ = The [[density]] of the [[object]]. m = The [[mass]] of the [[object]]. V = The [[Volume (Space)|volume]] taken up by the [[object]]. ====Density of a composite or alloy material==== *<math>\rho = \frac{\rho_1V_1+\rho_2V_2}{V}</math> *<math>\rho = \frac{\rho_1V_1}{V}+\frac{\rho_2V_2}{V}</math> *<math>\rho = \frac{\rho_1V_1+\rho_2V_2}{V_1+V_2}</math> ρ = The [[density]] of the [[alloy]] ρ<sub>1</sub> = The [[density]] of one of the [[alloy]] composites ρ<sub>2</sub> = The [[density]] of the other [[alloy]] composite V<sub>1</sub> = The [[Volume (Space)|volume]] of one of the [[alloy]] composites V<sub>2</sub> = The [[Volume (Space)|volume]] of the other [[alloy]] composite V = The total [[Volume (Space)|volume]] taken up by the [[alloy]] ===Example Calculations=======Finding Density of an Alloy given the density and volume of its composites===={| class="wikitable"|-| style="height:20px; width:300px; text-align:center;" |'''A [[Volume (Space)|volume]] of 6.35x10<sup>-3</sup>m<sup>3</sup> [[Aluminium]] and 4.10x10<sup>-3</sup>m<sup>3</sup> [[Magnesium]] are [[alloy]]ed together. Given the density of [[Aluminium]] is 2700kgm<sup>-3</sup> and the density of [[Magnesium]] is 1700kgm<sup>-3</sup> then calculate the density of the [[alloy]]'''. | style="height:20px; width:300px; text-align:center;" |'''A [[Volume (Space)|volume]] of 4.9x10<sup>-3</sup>m<sup>3</sup> [[Copper]] and 1.1x10<sup>-3</sup>m<sup>3</sup> [[Zinc]] are [[alloy]]ed together. Given the density of [[Copper]] is 8900kgm<sup>-3</sup> and the density of [[Zinc]] is 7100kgm<sup>-3</sup> then calculate the density of the [[alloy]]'''.|-| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' [[Aluminium]] [[Volume (Space)|volume]] = 6.35x10<sup>-3</sup>m<sup>3</sup> [[Aluminium]] [[Density]] = 2700kgm<sup>-3</sup> [[Magnesium]] [[Volume (Space)|volume]] = 4.10x10<sup>-3</sup>m<sup>3</sup> [[Magnesium]] [[Density]] = 1700kgm<sup>-3</sup> | style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities in [[SI Unit]]s''' [[Copper]] [[Volume (Space)|volume]] = 4.9x10<sup>-3</sup>m<sup>3</sup> [[Copper]] [[Density]] = 8900kgm<sup>-3</sup> [[Zinc]] [[Volume (Space)|volume]] = 1.1x10<sup>-3</sup>m<sup>3</sup> [[Zinc]] [[Density]] = 7100kgm<sup>-3</sup> |-| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' *<math>\rho = \frac{\rho_{Al}V_{Al}+\rho_{Mg}V_{Mg}}{V_{Al}+V_{Mg}}</math> *<math>\rho = \frac{2700\times 6.35 \times 10^{-3} + 1700\times 4.10 \times 10^{-3}}{6.35 \times 10^{-3} + 4.10 \times 10^{-3}}</math> *<math>\rho = 2310kgm^{-3}</math> However, this assumes that the total [[Volume (Space)|volume]] of the [[object]] is simply the [[sum]] of the two [[Volume (Space)|volumes]] which is not necessarily the case due to the way different sized [[particle]]s form a [[lattice]].  | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' *<math>\rho = \frac{\rho_{Cu}V_{Cu}+\rho_{Zn}V_{Zn}}{V_{Cu}+V_{Zn}}</math> *<math>\rho = \frac{8900\times 4.9 \times 10^{-3} + 7100\times 1.1 \times 10^{-3}}{4.9 \times 10^{-3} + 1.1 \times 10^{-3}}</math>
:*<math>\rho = \tfrac{5000}8600kgm^{0.635-3}</math>
:<math>\rho = 7874kg/m<sup>3</sup></math>However, this assumes that the total [[Volume (Space)| style="height:20px; width:200px; text-align:center;" volume]] of the [[object]] is simply the [[sum]] of the two [[Volume (Space)|Text| style="height:20px; width:200px; text-align:center;" |Textvolumes]] which is not necessarily the case due to the way different sized [[particle]]s form a [[lattice]].
|}