Open main menu

Difference between revisions of "Relative Permittivity"

(Equation)
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
  
 
===Equation===
 
===Equation===
The '''permittivity''' of a [[medium]] is the [[product]] of
+
: When an [[Electrostatic Field|electrostatic field]] propagates through a [[medium]] which is not the [[vacuum]] the [[permittivity]] of that [[medium]] is given by the product of its '''relative permittivity''' and the [[Permittivity of Free Space|permittivity of free space]].
 +
 
 +
<math>\varepsilon=\varepsilon_r\varepsilon_0</math>
 +
 
 +
Therefore
 +
 
 +
<math>\varepsilon_r=\dfrac{\varepsilon}{\varepsilon_0}</math>
 +
 
 +
===Example Media===
 +
{| class="wikitable"
 +
 
 +
|-
 +
| style="height:20px; width:200px; text-align:center;" |[[Medium]]
 +
| style="height:20px; width:200px; text-align:center;" |'''Relative Permittivity'''
 +
|-
 +
| style="height:20px; width:200px; text-align:center;" |Air
 +
| style="height:20px; width:200px; text-align:center;" |1.00054
 +
|-
 +
| style="height:20px; width:200px; text-align:center;" |Glass
 +
| style="height:20px; width:200px; text-align:center;" |4.7
 +
|-
 +
| style="height:20px; width:200px; text-align:center;" |Water (at 0°C)
 +
| style="height:20px; width:200px; text-align:center;" |88
 +
|-
 +
| style="height:20px; width:200px; text-align:center;" |Steam (at 100°C)
 +
| style="height:20px; width:200px; text-align:center;" |55
 +
|}

Latest revision as of 15:14, 7 September 2019

Key Stage 5

Meaning

Relative Permittivity is the ratio of the Permittivity of a medium compared to the Permittivity of Free Space.

About Relative Permittivity

Relative permittivity of a medium is denoted with the Greek letter epsilon followed by a subscript of r (\(\varepsilon_r\)).
Relative permittivity has no units.

Equation

When an electrostatic field propagates through a medium which is not the vacuum the permittivity of that medium is given by the product of its relative permittivity and the permittivity of free space.

\(\varepsilon=\varepsilon_r\varepsilon_0\)

Therefore

\(\varepsilon_r=\dfrac{\varepsilon}{\varepsilon_0}\)

Example Media

Medium Relative Permittivity
Air 1.00054
Glass 4.7
Water (at 0°C) 88
Steam (at 100°C) 55