Difference between revisions of "Accurate"
(Created page with "==Key Stage 4== ===Meaning=== Results are accurate if they are close to the true value. ===About Accuracy=== : Accuracy is achieved by: :*Removing Systematic Er...") |
|||
Line 13: | Line 13: | ||
: The number [[pi]] is 3.14159265359 correct to 12 [[Significant Figures|significant figures]]. | : The number [[pi]] is 3.14159265359 correct to 12 [[Significant Figures|significant figures]]. | ||
− | : 3.1 is an [[accurate]] value for [[pi]] but it is not very [[precise]]. | + | : 3.1 is an [[accurate]] value for [[pi]] but it is not very [[precise]] - Close to the real number, but not many [[Significant Figures|significant figures]]. |
− | : 3.2111 is a [[precise]] value for [[pi]] but it is '''inaccurate'''. | + | : 3.2111 is a [[precise]] value for [[pi]] but it is '''inaccurate''' - Not close enough to the real number, but has several [[Significant Figures|significant figures]]. |
Revision as of 11:21, 21 March 2019
Key Stage 4
Meaning
Results are accurate if they are close to the true value.
About Accuracy
- Accuracy is achieved by:
- Removing systematic errors and zero errors from the readings.
- Controlling all the variables except for the independent variable and the Dependent Variable.
- If there are random errors and a small sample size taking repeat readings, removing anomalies and calculating an average can improve the accuracy.
- If there are systematic errors or zero errors the results can be improved by finding the source of the error and correcting it.
Accuracy vs Precision
- The number pi is 3.14159265359 correct to 12 significant figures.
- 3.1 is an accurate value for pi but it is not very precise - Close to the real number, but not many significant figures.
- 3.2111 is a precise value for pi but it is inaccurate - Not close enough to the real number, but has several significant figures.