Open main menu

Difference between revisions of "Nuclear Equation"

(General Formulae)
(Examples)
Line 17: Line 17:
  
 
===Examples===
 
===Examples===
<math>{}_{238}^{92}U \rightarrow {}_{234}^{90}Th + {}_4^2\alpha</math>
+
<math>{}_{92}^{238}U \rightarrow {}_{90}^{234}Th + {}_2^4\alpha</math>
  
<math>{}_{238}^{92}U \rightarrow {}_{234}^{90}Th + {}_4^2\alpha</math>
+
<math>{}_{28}^{65}Ni \rightarrow {}_{29}^{65}Cu + {}_-1^0\beta</math>
 +
 
 +
<math>{}_{42}^{99}Mo \rightarrow {}_{42}^{99}Mo + {}_0^0\gamma</math>
 +
 
 +
<math>{}_{8}^{18}O \rightarrow {}_{8}^{17}O + {}_0^1n</math>
  
 
===Calculating the Element/Isotope===
 
===Calculating the Element/Isotope===

Revision as of 10:33, 8 March 2019

Key Stage 4

Meaning

A nuclear equation is a type of symbol equation used to show the changes which take place in a radioactive decay.

About Nuclear Equations

Nuclear equations can be used to predict the products of a radioactive decay or a series of decays which take place one after the other.
In nuclear equations the relative atomic mass and relative atomic charge accompany the symbols for the elements and the ionising radiation they produce.

General Formulae

Alpha Decay\[{}_Z^AX \rightarrow {}_{Z-2}^{A-4}Y + {}_2^4\alpha\]

Beta Decay\[{}_Z^AX \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^0\beta\]

Gamma Emission\[{}_Z^AX \rightarrow {}_Z^AX + {}_0^0\gamma\]

Neutron Decay\[{}_Z^AX \rightarrow {}_{Z}^{A-1}Y + {}_0^1n\]

Examples

\({}_{92}^{238}U \rightarrow {}_{90}^{234}Th + {}_2^4\alpha\)

\({}_{28}^{65}Ni \rightarrow {}_{29}^{65}Cu + {}_-1^0\beta\)

\({}_{42}^{99}Mo \rightarrow {}_{42}^{99}Mo + {}_0^0\gamma\)

\({}_{8}^{18}O \rightarrow {}_{8}^{17}O + {}_0^1n\)

Calculating the Element/Isotope