Difference between revisions of "Nuclear Equation"
(→General Formulae) |
(→Examples) |
||
Line 17: | Line 17: | ||
===Examples=== | ===Examples=== | ||
− | <math>{}_{ | + | <math>{}_{92}^{238}U \rightarrow {}_{90}^{234}Th + {}_2^4\alpha</math> |
− | <math>{}_{ | + | <math>{}_{28}^{65}Ni \rightarrow {}_{29}^{65}Cu + {}_-1^0\beta</math> |
+ | |||
+ | <math>{}_{42}^{99}Mo \rightarrow {}_{42}^{99}Mo + {}_0^0\gamma</math> | ||
+ | |||
+ | <math>{}_{8}^{18}O \rightarrow {}_{8}^{17}O + {}_0^1n</math> | ||
===Calculating the Element/Isotope=== | ===Calculating the Element/Isotope=== |
Revision as of 10:33, 8 March 2019
Contents
Key Stage 4
Meaning
A nuclear equation is a type of symbol equation used to show the changes which take place in a radioactive decay.
About Nuclear Equations
- Nuclear equations can be used to predict the products of a radioactive decay or a series of decays which take place one after the other.
- In nuclear equations the relative atomic mass and relative atomic charge accompany the symbols for the elements and the ionising radiation they produce.
General Formulae
Alpha Decay\[{}_Z^AX \rightarrow {}_{Z-2}^{A-4}Y + {}_2^4\alpha\]
Beta Decay\[{}_Z^AX \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^0\beta\]
Gamma Emission\[{}_Z^AX \rightarrow {}_Z^AX + {}_0^0\gamma\]
Neutron Decay\[{}_Z^AX \rightarrow {}_{Z}^{A-1}Y + {}_0^1n\]
Examples
\({}_{92}^{238}U \rightarrow {}_{90}^{234}Th + {}_2^4\alpha\)
\({}_{28}^{65}Ni \rightarrow {}_{29}^{65}Cu + {}_-1^0\beta\)
\({}_{42}^{99}Mo \rightarrow {}_{42}^{99}Mo + {}_0^0\gamma\)
\({}_{8}^{18}O \rightarrow {}_{8}^{17}O + {}_0^1n\)