Open main menu

Changes

Hooke's Law

9,529 bytes added, 14:18, 22 December 2019
Meaning
===About Hooke's Law===
: '''Hooke's Law''' describes how [[elastic]] [[object]]s behave when a pair of opposing [[force]]s is , one at each end of the [[object]], are applied.: '''Hooke's Law''' is described by the equation: Force = (Spring Constant ) x (Extension)
{| class="wikitable"
===Equation===
 
Force = (Spring Constant) x (Extension of the spring)
 
<math> F = kx </math>
 
<math> F = k \times x </math>
 
Where
 
<math>F</math> = [[Force]] applied
 
<math>k</math> = [[Spring Constant]] (stiffness of the elastic object)
 
<math>x</math> = [[Extension]] of the [[object]]
 
===Example Calculations===
 
{| class="wikitable"
|+ Calculating Force
| style="height:20px; width:200px; text-align:center;" |A bow with a spring constant of 400N/m is stretched 0.5m. Calculate the force applied in the bow.
| style="height:20px; width:200px; text-align:center;" |A bungee cord with a spring constant of 45N/m stretches by 30m. Calculate the [[force]] applied to the cord.
| style="height:20px; width:200px; text-align:center;" |A slinky spring of length 10cm and spring constant 0.8N/m is stretched to a length of 10.1m. Calculate the [[force]] needed to stretch the slinky.
|-
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
 
Extension = 0.5m
 
Spring Constant = 400N/m
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
 
Extension = 30m
 
Spring Constant = 45N/m
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
 
Original Length = 10cm = 0.1m
 
New Length = 10.1m
 
Extension = 10.1 - 0.1 = 10m
 
Spring Constant = 0.8N/m
|-
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
 
<math> F = kx </math>
 
<math> F = 400 \times 0.5 </math>
 
<math> F = 200N </math>
 
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
 
<math> F = kx </math>
 
<math> F = 45 \times 30 </math>
 
<math> F = 1350N </math>
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
 
<math> F = kx </math>
 
<math> F = 0.8 \times 10 </math>
 
<math> F = 8N </math>
|}
 
==Key Stage 4==
===Meaning===
'''Hooke's Law''' states that the [[extension]] of an [[elastic]] [[object]] is [[Directly Proportional|directly proportional]] to the [[force]] applied to the [[object]].
 
===About Hooke's Law===
: '''Hooke's Law''' describes how [[elastic]] [[object]]s behave when a pair of [[Equilibrium Forces|equilibrium forces]] is applied.
: '''Hooke's Law''' is described by the equation: Force = (Spring Constant) x (Extension)
: '''Hooke's Law''' applies to an [[object]] until it reaches its [[Elastic Limit|elastic limit]], at which point the [[object]] begins to behave [[Inelastic Deformation|plastically]].
 
 
{| class="wikitable"
|-
|[[File:HookesLawSpring.png|center|400px]]
|-
| style="height:20px; width:200px; text-align:left;" |When a [[weight]] is added the spring [[Extension|extends]]. If the [[weight]] is doubled the [[extension]] is also doubled.
|}
: [[Elastic]] [[object]]s have an [[Elastic Limit]]. This means if the [[force]] is too big they stop obeying '''Hooke's Law''' and start to [[Deformation|deform]] [[Plastic (Property)|plastically]] so they will not return to their original shape.
 
===Equation===
Equilibrium Force = (Spring Constant) x (Extension of the Object)
 
<math> F = kx </math>
<math> F = k \times x </math>
Where:: <math>F</math> = [[Equilibrium Force ]] applied: <math>k</math> = [[Spring Constant ]] (stiffness of the elastic object): <math>x</math> = [[Extension ]] of the [[object]] ===Example Calculations=======Calculating Equilibrium Force===={| class="wikitable"| style="height:20px; width:200px; text-align:center;" |A bow with a spring constant of 390N/m is stretched 0.52m. Calculate the force applied in the bow correct to two [[Significant Figures|significant figures]].| style="height:20px; width:200px; text-align:center;" |A bungee cord with a spring constant of 45N/m stretches by 29m. Calculate the [[force]] applied to the cord correct to two [[Significant Figures|significant figures]].| style="height:20px; width:200px; text-align:center;" |A slinky spring of length 15cm and spring constant 0.87N/m is stretched to a length of 10m. Calculate the [[force]] needed to stretch the slinky correct to two [[Significant Figures|significant figures]].|-| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities''' Extension = 0.52m Spring Constant = 390N/m| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities''' Extension = 29m Spring Constant = 45N/m| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities''' Original Length = 15cm = 0.15m New Length = 10m Extension = 10 - 0.15 = 9.85m Spring Constant = 0.87N/m|-| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' <math> F = kx </math> <math> F = 390 \times 0.52 </math> <math> F = 202.8N </math> <math> F \approx 200N </math> | style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' <math> F = kx </math> <math> F = 45 \times 29 </math> <math> F = 1305N </math> <math> F \approx 1300N </math> | style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].''' <math> F = kx </math> <math> F = 0.87 \times 9.85 </math> <math> F = 8.5695N </math> <math> F \approx 8.6N </math>|} ====Calculating Spring Constant===={| class="wikitable"| style="height:20px; width:200px; text-align:center;" |A car weighing 19000N rests on a single suspension spring. This causes the spring to shorten by 0.15m. Calculate the spring constant of this spring correct to two [[Significant Figure|significant figures]].| style="height:20px; width:200px; text-align:center;" |A girl of weight 360N balances perfectly on a pogo stick. When she is on the stick it is 13cm shorter than when she steps off. Calculate the spring constant of this spring correct to two [[Significant Figure|significant figures]].| style="height:20px; width:200px; text-align:center;" |A horse trailer of height 3.66m has 4 wheels, each with a suspension spring. When a horse which weighs 6200N gets on the trailer the height is reduced to 3.61m. Calculate the spring constant of each spring correct to two [[Significant Figure|significant figures]].|-| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities''' Extension = 0.15m Force = 19000| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities''' Extension = 13cm = 0.13m Force = 360N| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''Original Length = 3.66m Final Length = 3.61m Extension = 0.05m Force = 6200N|-| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math> F = kx </math> <math> 19000 = k \times 0.15 </math>| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math> F = kx </math> <math> 360 = k \times 0.13 </math> | style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' <math> F = kx </math> <math> 6200 = k \times 0.05 </math>|-| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math> k = \frac{19000}{0.15} </math> <math> k = 126666.7N/m </math> <math> k \approx 130000N/m </math> | style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math> k = \frac{360}{0.13} </math> <math> k = 2769.23N/m </math> <math> k \approx 2800N/m </math>| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' <math> k = \frac{6200}{0.05} </math> <math> k = 124000N/m </math> <math> k \approx 120000N/m </math>|} ===References=======AQA==== :[https://www.amazon.co.uk/gp/product/019835939X/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=019835939X&linkCode=as2&tag=nrjc-21&linkId=57e96876985fc39b1a3d8a3e3dc238b6 ''Hooke’s Law, pages 13, 159, GCSE Physics; Third Edition, Oxford University Press, AQA '']:[https://www.amazon.co.uk/gp/product/0008158770/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0008158770&linkCode=as2&tag=nrjc-21&linkId=ec31595e720e1529e49876c3866fff6e ''Hooke's Law, pages 178-9, GCSE Physics; Student Book, Collins, AQA ''] ====OCR====:[https://www.amazon.co.uk/gp/product/0198359837/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=0198359837&linkCode=as2&tag=nrjc-21&linkId=3c4229e8b023b2b60768e7ea2307cc6f ''Hooke`s law, pages 79, 253, 289, Gateway GCSE Physics, Oxford, OCR '']:[https://www.amazon.co.uk/gp/product/1782945695/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945695&linkCode=as2&tag=nrjc-21&linkId=ceafcc80bcad6b6754ee97a0c7ceea53 ''Hooke’s Law, pages 170-173, Gateway GCSE Combined Science; The Revision Guide, CGP, OCR '']:[https://www.amazon.co.uk/gp/product/1782945687/ref=as_li_tl?ie=UTF8&camp=1634&creative=6738&creativeASIN=1782945687&linkCode=as2&tag=nrjc-21&linkId=9a598e52189317a20311d7a632747bc9 ''Hooke’s Law, pages 36, 37, Gateway GCSE Physics; The Revision Guide, CGP, OCR '']