Open main menu

Difference between revisions of "Newton's Second Law"

(=Finding the Force given Mass and Acceleration)
Line 20: Line 20:
  
 
===Example Calculations===
 
===Example Calculations===
====Finding the Force given Mass and Acceleration===
+
====Finding the Force given Mass and Acceleration====
 
{| class="wikitable"
 
{| class="wikitable"
| style="height:20px; width:200px; text-align:center;" |A 2.3kg [[object]] [[accelerate]]s at a rate of 8.8m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the [[object]] correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 2.3kg [[object]] [[accelerate]]s at a rate of 8.8m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the [[object]] correct to two [[Significant Figures|significant figures]].
| style="height:20px; width:200px; text-align:center;" |A 5.5x10<sup>4</sup>kg rocket [[accelerate]]s at a rate of 61m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the rocket correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 5.5x10<sup>4</sup>kg rocket [[accelerate]]s at a rate of 61m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the rocket correct to two [[Significant Figures|significant figures]].
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 2.3kg
 
m = 2.3kg
  
 
a = 8.8m/s/s
 
a = 8.8m/s/s
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 5.5x10<sup>4</sup>kg
 
m = 5.5x10<sup>4</sup>kg
Line 36: Line 36:
 
a = 61m/s/s
 
a = 61m/s/s
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 45: Line 45:
  
 
<math>F \approx 20N</math>
 
<math>F \approx 20N</math>
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 56: Line 56:
 
|}
 
|}
  
====Finding the Acceleration given Mass and Force===
+
====Finding the Acceleration given Mass and Force====
 
{| class="wikitable"
 
{| class="wikitable"
| style="height:20px; width:200px; text-align:center;" |A 7kg [[object]] is subjected to a [[Resultant Force|resultant force]] of 53N. Calculate the [[acceleration]] of the [[object]] correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 7kg [[object]] is subjected to a [[Resultant Force|resultant force]] of 53N. Calculate the [[acceleration]] of the [[object]] correct to two [[Significant Figures|significant figures]].
| style="height:20px; width:200px; text-align:center;" |A 160g snooker ball experiences a [[Resultant Force|resultant force]] of 12N. Calculate the [[acceleration]] of the snooker ball correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 160g snooker ball experiences a [[Resultant Force|resultant force]] of 12N. Calculate the [[acceleration]] of the snooker ball correct to two [[Significant Figures|significant figures]].
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 7kg
 
m = 7kg
  
 
F = 53N
 
F = 53N
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 160g = 0.16kg
 
m = 160g = 0.16kg
Line 72: Line 72:
 
F = 12N
 
F = 12N
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
  
 
<math>53=7a</math>
 
<math>53=7a</math>
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 83: Line 83:
 
<math>12=0.16a</math>
 
<math>12=0.16a</math>
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
 
<math>a = \frac{53}{7}</math>
 
<math>a = \frac{53}{7}</math>
  
Line 89: Line 89:
  
 
<math>a \approx 7.6m/s/s</math>
 
<math>a \approx 7.6m/s/s</math>
| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
 
<math>a = \frac{12}{0.16}</math>
 
<math>a = \frac{12}{0.16}</math>
  
Line 119: Line 119:
 
====Finding the Force given Mass and Acceleration====
 
====Finding the Force given Mass and Acceleration====
 
{| class="wikitable"
 
{| class="wikitable"
| style="height:20px; width:200px; text-align:center;" |A 1.23Mg [[object]] [[accelerate]]s at a rate of 5.3x10<sup>-2</sup>m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the [[object]] correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 1.23Mg [[object]] [[accelerate]]s at a rate of 5.3x10<sup>-2</sup>m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the [[object]] correct to two [[Significant Figures|significant figures]].
| style="height:20px; width:200px; text-align:center;" |A 1.7x10ng cell [[accelerate]]s at a rate of 320m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the rocket correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 1.7x10ng cell [[accelerate]]s at a rate of 320m/s/s. Calculate the [[Resultant Force|resultant force]] acting on the rocket correct to two [[Significant Figures|significant figures]].
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 1.23Mg = 1230kg
 
m = 1.23Mg = 1230kg
  
 
a = 5.3x10<sup>-2</sup>m/s/s
 
a = 5.3x10<sup>-2</sup>m/s/s
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 1.7ng = 1.7x10<sup>-12</sup>kg
 
m = 1.7ng = 1.7x10<sup>-12</sup>kg
Line 133: Line 133:
 
a = 320m/s/s.
 
a = 320m/s/s.
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 142: Line 142:
  
 
<math>F \approx 65N</math>
 
<math>F \approx 65N</math>
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers into the [[equation]] and [[Solve (Maths)|solve]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 153: Line 153:
 
|}
 
|}
  
====Finding the Acceleration given Mass and Force===
+
====Finding the Acceleration given Mass and Force====
 
{| class="wikitable"
 
{| class="wikitable"
| style="height:20px; width:200px; text-align:center;" |A 9.2g [[object]] is subjected to a [[Resultant Force|resultant force]] of 3.7kN. Calculate the [[acceleration]] of the [[object]] correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 9.2g [[object]] is subjected to a [[Resultant Force|resultant force]] of 3.7kN. Calculate the [[acceleration]] of the [[object]] correct to two [[Significant Figures|significant figures]].
| style="height:20px; width:200px; text-align:center;" |A 333 tonne passenger plane experiences a [[Resultant Force|resultant force]] of 1.008MN. Calculate the [[acceleration]] of the passenger plane correct to two [[Significant Figures|significant figures]].
+
| style="height:20px; width:300px; text-align:center;" |A 333 tonne passenger plane experiences a [[Resultant Force|resultant force]] of 1.008MN. Calculate the [[acceleration]] of the passenger plane correct to two [[Significant Figures|significant figures]].
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 9.2g = 0.0092kg
 
m = 9.2g = 0.0092kg
  
 
F = 3.7kN = 3700N
 
F = 3.7kN = 3700N
| style="height:20px; width:200px; text-align:left;" |'''1. State the known quantities'''
+
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities'''
  
 
m = 333 tonne = 3.33 x 10<sup>5</sup>kg
 
m = 333 tonne = 3.33 x 10<sup>5</sup>kg
Line 169: Line 169:
 
F = 1.008MN = 1.008 x 10<sup>6</sup>N
 
F = 1.008MN = 1.008 x 10<sup>6</sup>N
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
  
 
<math>3700=0.0092a</math>
 
<math>3700=0.0092a</math>
| style="height:20px; width:200px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].'''
  
 
<math>F=ma</math>
 
<math>F=ma</math>
Line 180: Line 180:
 
<math>1.008 \times 10^6 = (3.33 \times 10^5 )a</math>
 
<math>1.008 \times 10^6 = (3.33 \times 10^5 )a</math>
 
|-
 
|-
| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
 
<math>a = \frac{3700}{0.0092}</math>
 
<math>a = \frac{3700}{0.0092}</math>
  
Line 186: Line 186:
  
 
<math>a \approx 4.0 \times 10^5m/s/s</math>
 
<math>a \approx 4.0 \times 10^5m/s/s</math>
| style="height:20px; width:200px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
+
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].'''
 
<math>a = \frac{1.008 \times 10^6}{3.33 \times 10^5}</math>
 
<math>a = \frac{1.008 \times 10^6}{3.33 \times 10^5}</math>
  

Revision as of 16:51, 14 February 2019

Key Stage 4 Foundation

Meaning

Newton's Second Law states that "Force = Mass x Acceleration, which means the acceleration of an object is directly proportional to the resultant force acting upon it."

About Newton's Second Law

Newton's Second Law can be used to calculate the acceleration of an object given its mass and the resultant force acting upon it.

Equation

Force = Mass x Acceleration

\(F=ma\)

Where:

F = The Resultant Force on the object.

m = The mass of the object.

a = The acceleration of the object.

Example Calculations

Finding the Force given Mass and Acceleration

A 2.3kg object accelerates at a rate of 8.8m/s/s. Calculate the resultant force acting on the object correct to two significant figures. A 5.5x104kg rocket accelerates at a rate of 61m/s/s. Calculate the resultant force acting on the rocket correct to two significant figures.
1. State the known quantities

m = 2.3kg

a = 8.8m/s/s

1. State the known quantities

m = 5.5x104kg

a = 61m/s/s

2. Substitute the numbers into the equation and solve.

\(F=ma\)

\(F=2.3 \times 8.8\)

\(F=20.24N\)

\(F \approx 20N\)

2. Substitute the numbers into the equation and solve.

\(F=ma\)

\(F=5.5 \times 10^4 \times 61\)

\(F=3355000N\)

\(F \approx 3.4 \times 10^6 N\)

Finding the Acceleration given Mass and Force

A 7kg object is subjected to a resultant force of 53N. Calculate the acceleration of the object correct to two significant figures. A 160g snooker ball experiences a resultant force of 12N. Calculate the acceleration of the snooker ball correct to two significant figures.
1. State the known quantities

m = 7kg

F = 53N

1. State the known quantities

m = 160g = 0.16kg

F = 12N

2. Substitute the numbers and evaluate.

\(F=ma\)

\(53=7a\)

2. Substitute the numbers and evaluate.

\(F=ma\)

\(12=0.16a\)

3. Rearrange the equation and solve.

\(a = \frac{53}{7}\)

\(a = 7.571m/s/s\)

\(a \approx 7.6m/s/s\)

3. Rearrange the equation and solve.

\(a = \frac{12}{0.16}\)

\(a = 75m/s/s\)

Key Stage 4 Higher

Meaning

Newton's Second Law states that "Force = Mass x Acceleration, which means the acceleration of an object is directly proportional to the resultant force acting upon it."

About Newton's Second Law

Newton's Second Law can be used to calculate the acceleration of an object given its mass and the resultant force acting upon it.
Newton's Second Law provides a definition for inertial mass as the ratio of force to the acceleration of an object \(m= \frac{F}{a}\).

Equation

Force = (Inertial Mass) x Acceleration

\(F=ma\)

Where:

F = The Resultant Force on the object.

m = The Inertial Mass of the object.

a = The acceleration of the object.

Example Calculations

Finding the Force given Mass and Acceleration

A 1.23Mg object accelerates at a rate of 5.3x10-2m/s/s. Calculate the resultant force acting on the object correct to two significant figures. A 1.7x10ng cell accelerates at a rate of 320m/s/s. Calculate the resultant force acting on the rocket correct to two significant figures.
1. State the known quantities

m = 1.23Mg = 1230kg

a = 5.3x10-2m/s/s

1. State the known quantities

m = 1.7ng = 1.7x10-12kg

a = 320m/s/s.

2. Substitute the numbers into the equation and solve.

\(F=ma\)

\(F=1230 \times 5.3 \times 10^{-2}\)

\(F=65.19\)

\(F \approx 65N\)

2. Substitute the numbers into the equation and solve.

\(F=ma\)

\(F=1.7 \times 10^{-12} \times 320\)

\(F=0.000000000544N\)

\(F \approx 5.4 \times 10^{-10}N\)

Finding the Acceleration given Mass and Force

A 9.2g object is subjected to a resultant force of 3.7kN. Calculate the acceleration of the object correct to two significant figures. A 333 tonne passenger plane experiences a resultant force of 1.008MN. Calculate the acceleration of the passenger plane correct to two significant figures.
1. State the known quantities

m = 9.2g = 0.0092kg

F = 3.7kN = 3700N

1. State the known quantities

m = 333 tonne = 3.33 x 105kg

F = 1.008MN = 1.008 x 106N

2. Substitute the numbers and evaluate.

\(F=ma\)

\(3700=0.0092a\)

2. Substitute the numbers and evaluate.

\(F=ma\)

\(1.008 \times 10^6 = (3.33 \times 10^5 )a\)

3. Rearrange the equation and solve.

\(a = \frac{3700}{0.0092}\)

\(a = 402173.913m/s/s\)

\(a \approx 4.0 \times 10^5m/s/s\)

3. Rearrange the equation and solve.

\(a = \frac{1.008 \times 10^6}{3.33 \times 10^5}\)

\(a = 3.027m/s/s\)

\(a \approx 3.0m/s/s\)