Open main menu

Velocity-Time Graph

Revision as of 13:02, 14 February 2019 by NRJC (talk | contribs) (Example Calculations)

Contents

Key Stage 4

Meaning

A velocity-time graph is a graph that shows how the velocity of an object changes with time.

About Velocity Time Graphs

Velocity-time graphs give information about the journey taken by an object.
On a velocity-time graph the velocity is plotted on the y-axis and the time is plotted on the x-axis.
A velocity-time graph can be used to calculate the acceleration of an object or the distance travelled by the object.
The gradient of a velocity-time graph is the same as the acceleration.
The area under the curve on a velocity-time graph is the distance travelled by an object.
Constant Velocity Accelerating Decelerating
A gradient of zero shows the object is travelling at a constant velocity. Acceleration is shown by a positive gradient. Deceleration is shown by a negative gradient.

Example Calculations

Calculating Acceleration

The acceleration can be calculated from a velocity-time graph by reading the graph and using the equation \(a=\frac{v-u}{t}\).
Calculate the acceleration of the object in this journey. Calculate the acceleration of the object in this journey.
State the known variables.

v = 40m/s

u = 20m/s

t = 8s

State the known variables.

v = 10m/s

u = 40m/s

t = 8s

2. Substitute the numbers into the equation and solve.

\(a = \frac{v-u}{t}\)

\(a = \frac{40-20}{8}\)

\(a = \frac{20}{8}\)

\(a = 2.5m/s/s\)

2. Substitute the numbers into the equation and solve.

\(a = \frac{v-u}{t}\)

\(a = \frac{10-40}{8}\)

\(a = \frac{-30}{8}\)

\(a = -3.75m/s/s\)

Calculate the acceleration of the object at each stage in this journey.
colspan = "3"
State the known variables.

v = 40m/s

u = 20m/s

t = 8s

2. Substitute the numbers into the equation and solve.

\(a = \frac{v-u}{t}\)

\(a = \frac{40-20}{8}\)

\(a = \frac{20}{8}\)

\(a = 2.5m/s/s\)

2. Substitute the numbers into the equation and solve.

\(a = \frac{v-u}{t}\)

\(a = \frac{10-40}{8}\)

\(a = \frac{-30}{8}\)

\(a = -3.75m/s/s\)

Calculating Distance Travelled

The distance travelled can be calculated from a velocity-time graph by breaking the graph into simple shapes and finding the area of those shapes. This may use the equations \(area = base \times height\) for rectangular shapes and \(area = \frac{base \times height}{2}\) for triangular shapes.
Calculate the distance travelled by the object in this journey. Calculate the distance travelled by the object in this journey.
1. State the known quantities

base = 8s

height = 30m/s

1. State the known quantities

base = 8s

height = 40m/s

2. Substitute the numbers into the equation and solve.

\(area = b \times h\)

\(area = 8 \times 30\)

\(area = distance = 250m\)

2. Substitute the numbers into the equation and solve.

\(area = \frac{b \times h}{2}\)

\(area = \frac{8 \times 40}{2}\)

\(area = \frac{320}{2}\)

\(area = distance = 160m\)